Классы электронных усилителей и режимы работы активных усилительных приборов (ламп или транзисторов) традиционно обозначаются буквами латинского алфавита. Буквенные обозначения классов усиления могут дополнительно уточняться суффиксом, указывающим на режим согласования мощного каскада с источником сигнала (AB1, AB2 и т.п.) и с нагрузкой (F1, F2, F3). Устройства, совмещающие свойства двух «однобуквенных» классов, могут выделяться в особые классы, обозначаемые сочетанием двух букв (AB, BD, DE и устаревший BC).
Первая буквенная классификация, действующая по сей день (режимы А, B и С), сформировалась в 1920-е годы и была дополнена режимом, или классом, D в 1955 году. Начавшийся в 1960-е годы выпуск высокочастотных силовых транзисторов сделал возможным построение экономичных транзисторных усилителей радиочастот классов E и F. Последовательное усовершенствование транзисторных усилителей мощности звуковых частот класса B привело к разработке усилителей классов G и H. Единого реестра классов усиления не существует, поэтому в разных областях электроники или на разных рынках одна и та же буква (например, S) может обозначать принципиально разные устройства. Схемы, известные в Европе и Японии как класс G, в США относятся к классу H, и наоборот. Буква, широко используемая в одной области электроники (класс F с его производными F1, F2, F3 и т. д.), в другой области может считаться «свободной». Кроме того, есть «классы усилителей» — торговые марки компаний-производителей и стоящие за ними частные технические решения. Одни из них, например, конструктивно схожие усилители звуковых частот «класса S» и «класса АА», подробно описаны в литературе, другие известны только по рекламе производителей.
Традиционная классификация: класс А, B, С и D
В 1919 году инженер Bell Labs Джон Моркрофт и его стажёр Харальд Фрис, опубликовали анализ работы вакуумного триода в генераторе несущей частоты радиопередатчика. В этой работы были впервые определены режимы работы лампы без отсечки (режим А), с отсечкой в течение половины периода (режим B) и в течение более чем половины периода (режим С). В 1928 году Норман Маклаклан опубликовал в Wireless World первый подробный анализ двухтактного каскада в режимах А, B и C. В 1931 году американский Институт радиоинженеров (IRE) признал эту классификацию отраслевым стандартом. Режим работы усилителя, промежуточный между режимами А и B, получил название режима AB и широко применялся в ламповой технике, а введённое было понятие режима BC не прижилось. В 1950-е годы классификацию дополнил режим, или класс D — режим, в котором активные элементы каскада работают в ключевом (импульсном) режиме. С переходом промышленности на транзисторы понятия режимов A, AB, B и C были адаптированы к новой элементной базе, но принципиально не изменились.
Одна и та же схема двухтактного усилителя может работать в режимах А, АB, B и C. Режим задаётся выбором напряжения смещения на сетках (Vс):
Формулировки стандарта IRE были составлены в терминах выбора управляющих напряжений на сетке лампы, обеспечивающего непрерывное (А) или прерывающееся (B и C) протекание анодного тока. В других отраслях электроники сложились иные, эквивалентные формулировки. Конструкторы радиоприёмных устройств оперировали понятием угла проводимости гармонического сигнала, а конструкторы усилителей низкой частоты и усилителей постоянного тока — выбором рабочей точки на передаточной (анодно-сеточной) или выходной (вольт-амперной) характеристике лампы.
В русской технической литературе понятия режимов и классов A, AB, B и C близки, но не взаимозаменяемы. Понятие режима применяется к отдельно взятому транзистору или лампе усилительного каскада («режимом А называют такой режим работы усилительного элемента…»), понятие класса применяется к усилительному каскаду, или к усилителю в целом. В англоязычной литературе во всех случаях используется единственное понятие class («класс»).
Режим усилителей класса А
Режим А — такой режим работы усилительного элемента (транзистора или лампы), в котором при любых допустимых мгновенных значениях входного сигнала (напряжения или тока) ток, протекающий через усилительный элемент, не прерывается. Усилительный элемент не входит в режим отсечки, не отключается от нагрузки, поэтому форма тока через нагрузку более или менее точно повторяет входной сигнал. В частном случае усилителя гармонических колебаний режим А — такой режим, в котором ток через усилительный элемент протекает в течение всего периода, то есть угол проводимости равен 360º.
Более жёсткие определения оговаривают не только недопустимость отсечки, но и недопустимость насыщения (ограничения максимального тока) усилительного элемента. По определению М.А. Бонч-Бруевича, «режим А характеризуется тем, что при действии сигнала рабочая точка не выходит за пределы практически прямолинейного участка динамической характеристики лампы». При этом нелинейные искажения минимальны, но коэффициент полезного действия (КПД) каскада оказывается низким» из-за необходимости пропускать через усилительный элемент значительный ток покоя. В транзисторной радиотехнике каскад, отвечающий процитированному определению, называют недонапряжённым, а каскад, в котором на пике сигнала наблюдается насыщение или ограничение тока — перенапряжённым («напряжённость» в этом контексте есть относительная мера амплитуды входного сигнала). Режим работы на границе недонапряжённого и перенапряжённого состояний называется критическим.
Ток покоя усилительного элемента в режиме А должен, как минимум, превышать пиковый ток, отдаваемый каскадом в нагрузку. Теоретический КПД такого каскада при неискажённом воспроизведении сигналов максимально допустимой амплитуды равен 50 %; на практике он существенно ниже. В однотактных транзисторных усилителях мощности КПД обычно равен 20%, то есть на 1 Вт максимальной выходной мощности выходные транзисторы должны рассеивать 4 Вт тепла. Из-за сложностей с отведением тепла транзисторные УМЗЧ класса А, в отличие от их ламповых аналогов, распространения не получили. В маломощных широкополосных однотактных каскадах режим А, напротив, является единственно возможным решением. Всем иным режимам (AB, B и С) в однотактном включении свойственны недопустимо высокие нелинейные искажения. В узкополосных радиочастотных усилителях гармоники, порождаемые отсечкой усилительного элемента, могут быть эффективно отфильтрованы, но в широкополосных усилителях (УМЗЧ, видеоусилители, измерительные усилители) и усилителях постоянного тока этой возможности нет.
Режимы усилителей класса B и AB
В режиме B усилительный элемент способен воспроизводить либо только положительные (лампы, npn-транзисторы), либо только отрицательные (pnp-транзисторы) входные сигналы. При усилении гармонических сигналов угол проводимости равен 180° или незначительно превосходит эту величину. Режим AB является промежуточным между режимами A и B. Ток покоя усилителя в режиме AB существенно больше, чем в режиме B, но существенно меньше, чем ток, необходимый для режима А. При усилении гармонических сигналов усилительный элемент проводит ток в течение боольшей части периода: одна полуволна входного сигнала (положительная или отрицательная) воспроизводится без искажений, вторая сильно искажается. Угол проводимости такого каскада существенно больше 180°, но меньше 360°.
Предельный КПД идеального каскада в режиме B на синусоидальном сигнале равен 78,5%, реального транзисторного каскада — примерно 72%. Эти показатели достигаются только тогда, когда выходная мощность P равна максимально возможной мощности для данного сопротивления нагрузки Pмакс(Rн). С уменьшением выходной мощности КПД падает, а абсолютные потери энергии в усилителе возрастают. При выходной мощности, равной 1/3 Pмакс(Rн), потери реального транзисторного каскада достигают абсолютного максимума в 46% от Pмакс(Rн), а КПД каскада уменьшается до 40%. С дальнейшим уменьшением выходной мощности абсолютные потери энергии уменьшаются, но КПД продолжает снижаться.
Чтобы воспроизвести одну полуволну входного сигнала без искажений в области перехода через ноль, усилитель должен оставаться линейным при нулевом напряжении на входе — поэтому в усилительных элементах в режиме B, всегда устанавливается небольшой, но не нулевой ток покоя. В ламповых усилителях мощности в режиме B ток покоя составляет 5-15% от максимального выходного тока, в транзисторных усилителях — 10-100 мА на каждый транзистор. Все эти усилители двухтактные: одно плечо усилителя воспроизводит положительную полуволну, другое — отрицательную. На выходе обе полуволны складываются, формируя минимально искажённую усиленную копию входного сигнала. При малых мгновенных значениях выходного напряжения (в транзисторных усилителях — несколько сотен мВ) такой каскад работает в режиме A, при боольших напряжениях одно из плеч закрывается и каскад переключается в режим B.
В современной литературе нет единого мнения о классификации таких двухтактных транзисторных каскадов. По мнению Джона Линдси Худа и Боба Корделла, их следует рассматривать как режим AB. По мнению Г С. Цыкина, Дугласа Селфа и А.А. Данилова это режим B. С их точки зрения, полноценный режим AB начинается при существенно боольших токах покоя (и сопровождается неприемлемо большим уровнем переходных искажений).
Режим усилителей класса C
В режиме C, также как и в режиме B, усилительный элемент воспроизводит только положительные, либо только отрицательные входные сигналы. Однако рабочая точка усилительного элемента выбрана так, что при нулевом напряжении на входе (или при нулевом управляющем токе) усилительный элемент заперт. Ток через усилительный элемент возникает только после перехода управляющего сигнала через ноль; если этот сигнал гармонический, то усилитель воспроизводит одну искажённую полуволну (угол проводимости меньше 180°). В недонапряжённом режиме C амплитуда входного сигнала невелика, поэтому усилитель способен воспроизвести вершину этой полуволны. В перенапряжённом режиме C амплитуда входного сигнала столь велика, что усилитель искажает (срезает) и вершину полуволны: такой каскад преобразует синусоидальный входной сигнал в импульсы тока трапециевидной формы. Предельный теоретический КПД недонапряжённого усилителя в режиме C, так же как и в режиме B, равен 78,5%, а перенапряжённого — 100%. Из-за высоких нелинейных искажений усилители в режиме С, даже двухтактные, непригодны для воспроизведения широкополосных сигналов (звука, видеосигналов, постоянного тока). В резонансных усилителях радиопередатчиков они, напротив, широко применяются благодаря их высокому КПД.
В англоязычной литературе и недонапряжённый, и перенапряжённый режимы относят к «классическому», или «настоящему», режиму С (англ. classic Class C, true Class C). Современные усилители мощности радиочастот обычно работают в ином, «смешанном» режиме С (англ. mixed-mode Class C), который иногда выделяется в особый «режим СD». В течение одного периода транзистор такого усилителя последовательно проходит через четыре фазы — отсечки, нарастания коллекторного тока, насыщения и снижения тока, причём длительность активных фаз (нарастания и снижения тока) сопоставима с длительностью фаз отсечки и насыщения.
Режим усилителей класса D
Идея усилителя с импульсным управлением выходными лампами была предложена Д. В. Агеевым (СССР, 1951) и Алеком Ривзом (Великобритания). В 1955 году Роже Шарбонье (Франция) впервые назвал такие устройства усилителями класса D, а уже через год это название вошло в радиолюбительскую практику. В 1964 году в Великобритании выпустили первые транзисторные УМЗЧ класса D, не имевшие коммерческого успеха, в 1974 и 1978 столь же безуспешные попытки предприняли Infinity и Sony. Массовый выпуск усилителей этого класса стал возможен только после отладки производства силовых МДП-транзисторов, состоявшейся в первой половине 80-х годов.
Структурная схема усилителя класса D без петли обратной связи:
В режиме C форма тока выходных транзисторов может принимать вид почти прямоугольных импульсов. В режиме D такая форма тока заложена по определению: транзистор либо заперт, либо полностью открыт. Сопротивление открытого канала современных силовых МДП-транзисторов измеряется десятками и единицами мОм, поэтому в первом приближении можно считать, что в режиме D транзистор работает без потерь мощности. КПД реальных усилителей класса D равен примерно 90%, в наиболее экономичных образцах 95%, при этом он мало зависит от выходной мощности. Лишь при малых, 1 Вт и менее, выходных мощностях усилитель класса D проигрывает в энергопотреблении усилителю класса B.
Несмотря на созвучие с английским digital («цифровой»), усилители класса D не являются, в общем случае, цифровыми устройствами. Простейшая и наиболее распространённая схема усилителя класса D с синхронной широтно-импульсной модуляцией (ШИМ) — это полностью аналоговая схема. В её основе — задающий генератор сигнала треугольной формы, частота которого обычно равна 500 кГц, быстродействующий компаратор, и формирователь импульсов, открывающих выходные транзисторы. Если мгновенное значение входного напряжения превышает напряжение на выходе генератора, компаратор подаёт сигнал на открытие транзисторов верхнего плеча, если нет — то на открытие транзисторов нижнего плеча. Формирователь импульсов усиливает эти сигналы, попеременно открывая транзисторы верхнего и нижнего плеча, а включенный между ними и нагрузкой LC-фильтр сглаживает отдаваемый в нагрузку ток. На выходе усилителя — усиленная и демодулированная, очищенная от высокочастотных помех копия входного напряжения.
Схема с аналоговой ШИМ устойчива при любых значениях выходного напряжения, но не позволяет добиться высокого качества воспроизведения звука, даже если охватить её обратной связью. Нелинейные искажения класса D имеют несколько причин: нелинейность генератора сигнала треугольной формы, нелинейность катушек индуктивности выходного фильтра, нелинейность из-за мёртвого времени между включениями верхнего и нижнего плеча усилителя. В отличие от традиционных усилителей, в той или иной мере подавляющих нестабильность питающих напряжений, в усилителях класса D низкочастотные помехи беспрепятственно проходят с питающих шин на выход усилителя. Эти помехи, шумы и дрейф не только накладываются на усиленный сигнал, но и модулируют его по амплитуде. Чтобы снизить эти искажения, конструкторы перешли от синхронной ШИМ к асинхронной модуляции с переменной частотой следования импульсов и к сигма-дельта-модуляции (способ модуляции, обеспечивающий оцифровку сигнала с заданными характеристиками в рабочей полосе частот). Неизбежным следствием этого стал рост частоты переключения выходных транзисторов до десятков МГц и снижение КПД из-за роста потерь при переключении. Для того чтобы снизить эти потери, конструкторы применили простейшие цифровые схемы, уменьшавшие частоту переключения (например, преобразовывавшие последовательность управляющих импульсов 01010101…, соответствующую нулевому входному напряжению, в 0011…, 00001111… и так далее). Естественным развитием этого подхода стал полный отказ от аналоговой модуляции и переход к чисто цифровой обработке входных сигналов, а побочным следствием — разрастание номенклатуры однобуквенных «классов усиления».
В 1998 году основанная Адья Трипати компания Tripath выпустила полностью цифровой интегральный УМЗЧ класса D с заявленными показателями качества, приближавшимися к показателям «обычных» усилителей высокой верности. Новые микросхемы пошли в продажу под вывеской «класса Т» и получили в целом положительные отзывы прессы и радиолюбителей. Усилитель Tripath TA2020 вошёл в список «25 микросхем, которые потрясли мир» журнала IEEE Spectrum, а сама компания прекратила существование в 2007 году, не выдержав конкуренции с крупными производителями. За «классом T» последовали «класс J» компании Crown International, «класс TD» компании Lab.gruppen, «класс Z» компании Zetex и радиочастотный «класс M» компании PWRF. Обозреватель журнала EDN Пол Рейко заметил, что «cочинение новых ”классов усилителей” — не более чем маркетинговая уловка, которая приносит компании больше вреда, чем пользы … хотите новый класс усиления — купите Allen-Bradley (производитель ракеты Tomahawk) и изобретите заново класс AB».
Эволюция усилителей звуковой частоты: классы G, H, …
Класс G c переключением:
Следящий класс G и класс Н:
Гибридный класс D («класс TD»):
Гибридный класс D:
Максимальная мощность усилителя звуковой частоты, определяемая в том числе напряжением его питания, бывает востребована относительно редко. Боольшую часть времени усилитель воспроизводит сигналы относительно небольшой амплитуды. В усилителях классов B или AB это сопровождается высокими абсолютными потерями энергии при малом КПД (10—40%). Чтобы уменьшить потери и повысить КПД, следует снизить напряжение питания — но усилитель с низким напряжением питания окажется неспособным воспроизводить редкие пиковые фрагменты входного сигнала. Решение этой дилеммы предложил в 1964 году инженер НАСА Мануэль Крамер. По идее Крамера, усилитель класса B или AB следовало питать от источника напряжения с двумя или тремя комплектами шин питания. При воспроизведении сигналов малой амплитуды выходной каскад подключен к шинам с низким напряжением питания, а с ростом уровня сигнала он переключается на питание от шин с высоким напряжением.
Серийный выпуск таких УМЗЧ начала в 1977 году компания Hitachi. Новинка получила маркетинговый ярлык «класса G», который прижился в японской и британской литературе и стал признанным дополнением традиционной классификации усилителей. Японские усилители класса G спросом не пользовались, а аналогичная конструкция Боба Карвера, выпущенная в 1981 году, прижилась на американском рынке профессионального оборудования. Придуманное Карвером название «класс H» закрепилось в американской литературе, и некогда универсальная классификация распалась на региональные ниши — «американскую» и «англо-японскую». С течением времени американские авторы вернулись к «англо-японским» обозначением — именно их используют, например, Деннис Бонн (2012) и Боб Корделл (2011). Современное понятие «класса G» объединяет два подхода к переключению шин питания — ступенчатое и плавное переключение, и два подхода к схемотехнике выходного каскада — последовательное включение («внутренний» каскад собственно УМЗЧ вложен во «внешний» каскад управления шинами питания) и параллельное (два выходных каскада, «низковольтный» и «высоковольтный», подключены к нагрузке в параллель).
Следующим этапом развития экономичных усилителей стал «европейский» класс H — усилители с плавно изменяющимся напряжением источника питания. При малых уровнях выходного сигнала усилитель подключен к «обычным» шинам с низким напряжением питания. При росте выходного напряжения напряжение на верхней (для положительной полуволны) или нижней (для отрицательной полуволны) шине питания увеличивается, поддерживая минимально необходимое падение напряжения на активном транзисторе. В простейшем варианте класса H используется конденсатор вольтодобавки, заряжаемый от основной шины источника питания. В более сложном варианте, применяемом в микросхемах автомобильных УМЗЧ, применяется встроенный преобразователь напряжения, накачивающий конденсаторы вольтодобавки до требуемых значений. За классом Н последовали разнообразные схемы гибридов усилителей классов B и D. В этих конструкциях «грязный» усилитель класса D формирует напряжение на шинах питания «чистого» усилителя в классе B или AB (реже — класса H), подключенного к нагрузке. Варианты таких усилителей получили названия «гибридного класса D», «класса TD» или «следящего класса D», «класса A/H», «класса К» (от Корея) и т.п. «Класс BD», напротив, не является гибридным — это всего лишь ранний вариант класса D с синхронной ШИМ.
Эволюция радиочастотных усилителей: классы E, F, …
Схемотехника радиочастотных усилителей развивается в двух основных направлениях: повышение рабочей (несущей) частоты сигнала и повышение коэффициента полезного действия в уже освоенных частотных диапазонах. В 1985 году транзисторные усилители, работающие на относительно низких частотах, достигли КПД в 95-98%, а уже на частоте в 30 МГц КПД снижался до 80%. К 2000 году то же значение КПД в 80% стало нормой для диапазона 900 МГц. На этих частотах задержка переключения транзистора становится сопоставимой с периодом несущей частоты, и грань между ключевыми режимами и режимами управляемого источника тока стирается. При этом не существует ни единой теории, описывающей процессы в сверхвысокочастотных мощных каскадах, ни единого метода анализа и оптимизации таких каскадов — даже давно известного каскада в смешанном режиме С.
В 1975 году попытку такого анализа провели отец и сын Натан и Алан Сокал. Взяв за основу хорошо известный ключевой каскад, они поставили задачу минимизации потерь во время переключения транзистора из закрытого состояния в открытое и обратно. Сокал сформулировали принцип работы экономичного усилителя мощности, названного ими «классом E». При выключении транзистора ток через него должен уменьшится до нуля до того, как начнёт нарастать коллекторное напряжение, а при включении — напряжение на коллекторе должно упасть до нуля до того, как начнёт нарастать ток. Сочетание высокого напряжения и большого тока недопустимы. Таким образом, утверждал Натан Сокал, возможно снизить потери с 35% до 15% потребляемой мощности даже на частотах, на которых задержка включения транзистора составляет 30% периода несущей частоты.
Альтернативный подход к снижению потерь — спектральное (гармоническое) разделение токов и напряжений в выходном каскаде. Нагрузка такого усилителя состоит из нескольких резонансных контуров, настроенных на пропускание чётных гармоник несущей частоты и на подавление нечётных гармоник. В идеале форма тока такого каскада содержит, помимо несущей частоты, только её чётные гармоники, а форма напряжения на коллекторе или стоке мощного транзистора — только нечётные. В реальных усилителях используется два или три контура, поэтому формы токов и напряжений существенно отличаются от идеальных. Усилители такого рода обычно выделяются в особый класс F, но в литературе также встречаются термины «экономичный класс С», «оптимальный класс С», «мультирезонансный класс С», HRA (англ. harmonic reactance amlifier), HCA (англ. harmonic control amplifier) и даже «класс Е» (в смысле, отличном от класса Е по Сокалу). В зависимости от конфигурации контуров и выбора подавляемых и пропускаемых гармоник внутри класса F выделяют подклассы F1, F2, F3, F-1 («обратный», или «инверсный», F) и т.п.
Еще одна статья по классам усиления
разбираюсь с классами усилителей с точки зрения качества! воспроизведения сигнала! С классом А ясность полная – повторение входного сигнала, пусть ценой больших потерь. С классом В вроде тоже ясно – за два такта на выходе повторение входного сигнала. Однако почему он менее ценится, где засады? И полная непонятка с классом АВ . Получается, что половина сигнала – без искажений, а половина с искажениями. А зачем тогда он нужен?
Класс А – имеет большой ток покоя,что при отсутствии сигнала,что с ним. При мощности 2 Х 100 Ватт,будет потреблять 500 Ватт на практике проверено (теоретически 350-400 Ватт). А это электрический самовар или утюг времён СССР. Далее,класс В – имеет смещение (искажения типа ступенька),что сразу-же заметно на слух. Имеет высокие значения нелинейных (гармонических) и интермодуляционных искажений,в отличии от класса А. При выходной мощности 2 х 100 Ватт,будет потреблять не более 160 Ватт. Класс АВ – золотая середина между классами А и В. Имеет смещение,как и в классе В,но более плавное и не столь значительное на слух. Более того,на малой громкости (мощности),работает практически как класс А,при большой мощности как класс В. Имеет практически такой-же КПД,как и класс В,но намного хуже качество. При мощности 2 х 100 Ватт,будет потреблять 160 Ватт теоретически (132,5 Ватт на практике по расчётам А.Сырицо и А.Агеев – БП усилителя класса АВ и В). Класс D – обладают самым высоким КПД. И верно написано выше,что их много (разных схем,для разных целей). Самые простые,используют для сабвуферов (имеют высокий коэффициент демпфирования – низкое выходное сопротивление на выходе),поэтому на качество особого внимания не обращают,лишь-бы не более 1% (на НЧ,искажения не столь критичны). Более качественные,соответственно и дорогие схемы,лишь немногим уступают классу А (стоят примерно так-же,но потребляют в четыре раза меньше и практически не нагреваются). Когда упадёт ценник на класс D,то он вытеснит классы АВ и В и будет конкурировать с классом А (и то,лишь для самовнушительных меломанов). Поверь,есть аппараты класса D,которые играют практически на одном уровне с классом А и лишь немного уступая им!
Вы хотите сказать, что у класса АВ в теории кпд 80%, а на практике 66%? эм…